Repository logo
UNIVERSIDAD NACIONAL
AUTÓNOMA DE CHOTA
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lopez, Ysolina"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Analytical optimisation of eco-friendly soap production using hyperspectral imaging and chemometric modelling of physicochemical properties.
    (Elsevier, 2025-08) Jara-Vélez, Joe Richard; Siche, Raúl;; Velásquez-Barreto, Frank Fluker; Salazar Campos, Juan Orlando; Lopez, Ysolina; Salazar-Campos, Johonathan
    The pressing environmental imperative to curb petrochemical detergent pollution has driven the development of circular approaches that valorise waste lipids. In this work, we establish an integrated chemometric–hyperspectral framework to optimise bar soap production from used frying oils (UFOs). A fractional Taguchi screening, followed by a central composite rotatable design (CCRD), systematically evaluated the effects of NaOH concentration (14–22 % w/v) and NaOH/UFO ratio (0.30–0.70) on soap pH and mechanical hardness. The optimal formulation (14.08 % NaOH; ratio 0.30) yielded bars with pH 10.31 ± 0.02 and hardness 359.6 ± 5.2 g, alongside superior textural resilience and cohesion. Near-infrared hyperspectral imaging (896–1704 nm) coupled with partial least squares regression (PLSR) enabled non-invasive, real-time pH prediction (R2 = 0.83; SEP = 0.18), while a simplified multiple linear regression (MLR) model refined alkalinity forecasts to R2 = 0.87. Hardness modelling (R2 < 0.60) highlighted the need for advanced variable-selection and nonlinear strategies to capture complex microstructural dynamics. By uniting NIR-HSI with data-driven calibration, our methodology delivers rapid quality control, reduces reliance on laborious assays and demonstrates a scalable, sustainable template for eco-innovative personal-care manufacturing.
UNIVERSIDAD NACIONAL
AUTÓNOMA DE CHOTA
SEDE ACADÉMICA

Jr. 30 de Agosto Nº 560 - Segundo Piso - Plaza de Armas


CORREO ELECTRÓNICO

repositorio@unach.edu.pe
imagen@unas.edu.pe